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Abstract-The present paper is devoted to the estimation of the contact resistance between rough surfaces. 
The roughness is described by a stochastically varying local contact resistance. General variational principles 
are derived which permit to determine lower and upper bounds of the macroscopic contact resistance. To 
illustrate the method, it has been used to calculate an upper bound for a random arrangement of circular 
contact spots of equal size. The bound of the macroscopic contact resistance is obtained as a functional of 

the pair distribution function of the contact spots 

NOMENCLATURE 

area ; 
area fraction of the contacts; 
arbitrary function of position ; 
correlation function ; 
Fourier transformed function f ; 
integral operator defined by equation 

(3.14); 
inversion operator of J ; 
thermal conductivity ; 
thermal conductivity of the upper body ; 
thermal conductivity of the lower body; 
vector of the Fourier space ; 
height of a circular cylinder ; 
stochastic operator defined by equation 
(3.18); 
number of contacts; 
projection operator defined by equation 

(3.5); 
heat flow; 
z-component of the heat flow density; 
trial function of q; 
constant heat flow density; 
heat flow density of a single contact given 
by equation (4.2); 
2-dim. position vector (x, y); 
radius of a circular cylinder ; 
radius of a circular contact spot ; 
3-dim. position vector (x, y, z); 
temperature field ; 
trial function of T; 
jump in temperature; 

thermal conductance of a single circular 
contact ; 
effective thermal conductance ; 
thermal conductance per unit area; 
effective value of u,,; 
volume ; 
surface of volume V; 
reduced local contact resistance defined by 
equation (3.17); 

Weffr effective value of w,, ; 

w+t upper bound of weff ; 
W-3 lower bound of wcff. 

Greek symbols 

F7 function of the area fraction defined by 
equation (4.20) ; 

6, step function defined by equation (4.3); 

VS, abbreviation of expression Jq’ in equation 

(4.4); 

P9 dimensionless integration variable. 

1. INTRODUCTION 

THE PHENOMENON of heat transfer between two bodies 
in contact is of great interest in many technical fields 
and, therefore, considerable attention has been paid to 
this problem during the last decades. The thermal 
contact resistance can be caused by various factors (see 
e.g. [ 11). In this paper we are dealing with the influence 
of the roughness and waviness on the heat transfer. In 
consequence of the roughness, the two bodies are in 
direct contact only at some spots (see Fig. 1) and, 
therefore, the heat flow is constricted near the surfaces. 
This effect is one of the main causes of thermal contact 
resistance. Previous estimations of the so-called con- 
striction resistance have been based on special assump- 

tions concerning the shape of single contact spots as 
well as their arrangement. For an isolated flat circular 
contact between two halfspaces the constriction re- 
sistance has been calculated exactly [2]. This result can 

FE. 1. Constriction of the heat flow near the rough surfaces. 
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be used to estimate the constriction resistance of two 
bodies with many circular contact spots by means of a 
parallel connection. This is a good approximation if 
the mutual distances of the contact spots are much 
larger than their characteristic size. In the opposite 
case, the mutual influence of the contacts must be 
taken into consideration. For a regular arrangement of 
contacts this can be done by considering the bodies as 
a parallel connection of identical finite cells, each of 
them containing only one contact spot. In order to 
simplify the calculations, these cells are usually appro- 
ximated by two circular cylinders connected by a 

coaxial circular contact [l, 3,4]. If, beside the rough- 
ness, there is also a waviness of the surfaces, the 
contacts are arranged in clusters. The constriction 
resistance of such clusters has been studied in [5-S] 
where circular contacts of different sizes are admitted. 

The present work proposes another approach to the 
problem of constriction resistance. Starting from a 
stochastic ‘mesoscopic’ description of the contact 
resistance, we can formulate general variational prin- 
ciples, which enable us, in principle, to derive upper 
and lower bounds for the macroscopic constriction 
resistance. The actual value of the resistance has to lie 
between these bounds. To obtain satisfactory bounds 
which are narrow enough, we have to construct 

suitable trial functions for the mesoscopic heat-flow 
vector and the temperature, respectively, and to insert 
them into the corresponding variational principles. An 

analogous approach has been largely used in the 
theory of effective material parameters of composites 
and other random media [9, lo]. The advantage of this 
method consists in the fact, that it yields rigorous 
inequalities of general validity for the effective mascro- 
scopic quantities. 

After a general definjtion of the effective contact 
resistance, given in Section 2. the variational principles 
are derived in Section 3. In Section 4 the formulism is 

applied to obtain an upper bound for the contact 
resistance of a random arrangement ofcircular contact 
spots. Informations about the arrangement are in- 
volved in form of the pair distribution function. 

Let us mention that all results obtained here are also 
valid for the electric contact resistance because of the 
mathematical equivaIence of both problems. 

L LOCAL AND EFFECTIVE THERMAL CONDUCTANCE 

We start from the well known definition of the 
macroscopic or effective thermal conductance Uclf : 

Q = - CTefr AT (2.1) 

where Q is the heat flow between the bodies in contact 
and AT is the jump in temperature at the interface. The 
total heat flow is given as a surface integral over the 
heat flow density CJ which is determined by 

q(R) = -u,,(R) AT(R) (2.2) 

Q = .fd%R). (2.3) 

The vector R denotes the position at the interface. 

Because of the roughness of the surfaces the local 
thermal conductance per unit area u,,(R) is a stochastic 
function of position as indicated by the subscript ‘St’. 
Inside the areas of direct contact, u,, takes very high 
values whereas outside the contacts it is small. In 
consequence of the constriction effect caused by the 
variations of u,, the heat flow density q and the jump in 
temperature AT are also random functions of position. 
The macroscopic value of AT in equation (2.1) has to 
be understood as the mean value averaged over the 
interface. 

In general, the rough surface differs only slightly 
from a plane, that means the deviations from the plane 
are small compared to the characteristic extensions or 
correlation lengths of the contact spots and, therefore, 
we approximate the two bodies in contact by two 

homogeneous halfspaces bounded by the plane z = 0. 
Thus the roughness and the partial contact are ex- 
pressed only by means of the randomly varying local 
conductance u,,. Finally, the macroscopic or effective 
thermal conductance per unit area uCfT is defined, 
analogously to equations (2.1) and (2.21, by 

u err WRq(R) 
Gf = --- = - A jd’RAT(R) = 

_ $!!R! (2.4) 

where the angle brackets 

(...) = ;Jd’R... (2.5) 

denote the average over a very large area A of the x. y- 
plane. 

3. DERIVATION OF VARIATIONAL PRINCIPLES 

We start from the basic equation of a stationary heat 
flow 

divqfrf = 0. (3.1) 

Inside the bodies, the heat flow density is given by 

q(r) = -K grad T(r). (3.2) 

If we assume the thermal conductivity K to be 
constant, equations (3.1) and (3.2) give 

divgrad T(r) = 0. (3.3) 

The interface z = 0 has to be excluded since equation 
(3.2) does not hold there. Equation (3.3) determines 
together with the boundary condition (2.2) the tem- 

perature field T(r). 
Now we introduce a mean value (T) of the 

temperature, which is defined as an average over the 
plane z = const. and, therefore, depends only upon the 
coordinate z. Thus the total tem~rature field may be 
written as 

T(r) = (T) + PT (3.4) 

where the operator 

Pf = f(r) - <f> (3.5) 

projects out the deviations of a stochastic function 
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from its mean value. From equation (3.3) it can easily 
be seen that the mean value (T) is a linear function of 

the z coordinate except the plane z = 0 where it suffers 
a jump. For the fluctuating part we obtain from 
equation (3.3) 

divgrad IT(r) = 0, z # 0. (3.6) 

Because of the geometrical symmetry of the problem 
the field q(r) is symmetric with respect to the interface 
z = 0. Moreover we can put 

PT(R, z) = -PT(R, -z) 

provided that the values of K are the same in 
bodies. For two bodies of different thermal 
ductivities we have instead of equation (3.7) 

K+PT(R, z) = -K_PT(R, -z), z > 0 

(3.7) 

both 
con- 

(3.8) 

where K + and K _ denote the values of the thermal 
conductivity for z > 0 and z < 0, respectively. Thus in 
the following all calculations may be restricted to the 
upper halfspace z > 0. Using an integral theorem of 
potential theory, we transform equation (3.6) into 

PT(r) = & 

This equation holds for every part V of the upper body 
and any r inside I/‘. In particular, we can choose the 
whole upper body. In order to simplify the argumen- 
tation let us assume the body to be a large circular 
cylinder of radius R, bounded by two planes z = 0 and 
z = L. Since the fluctuations PT tend to zero at large 
distances from the plane z = 0, only that parts of the 
surface of V which have sufficiently small values of z 
contribute to the integral. Therefore we can disregard 
the plane z = L. Moreover, if we require the lateral 
surface of the cylinder to be heat isolated, the second 

term of the integral vanishes there. The first term 
integrated over this part of the surface also vanishes for 

R, --t z because the integrand behaves as R;’ 

whereas the contributing surface increases only as 
R,. Consequently, in equation (3.9) only the integral 
over the plane z = +0 remains 

PT(r) = 4’,- rrTr,,3 PT(r’) 

- &;pT(r’) I (3.10) 
z,=+. 

If we introduce the notations 

T(R) = T(x y, z = +0) =+(R) (3.11) 

q(R) = -Kg T(X. y, z = +o) (3.12) 

and then go to the limit z = +O, then equation (3.10) 
becomes 

PT(R) = fPT(R) + $d’R ,R’R,, ; Pq(R’)(3.13) ~_ 

or 

P7-(R) = ; jd”R’ ’ 
2x/R-R’j 

Pq(R’) = :;JPq (3.14) 

where, for abbreviation, an integral operator J is 
defined by the last equality. 

The heat flow density q which appears in equation 

(3.14) is related to the temperature jump at the 
interface by equation (2.2) which yields, together with 
equation (3.11) 

T(R) = - 
1 

~ q(R). 
2%,(R) 

(3.15) 

Inserting this relation into the left-hand side of equa- 
tion (3.14), we get 

Let us define a reduced local contact resistance w,, and 
its effective value w,rr by 

K K KA 
w,, = -> 

2% 
W,ff = __ = p. 

24,f 2 Ueff 
(3.17) 

Then equation (3.16) can be written as 

L,, 4: = (W,I + JP) 4 = W,ff (4). (3.18) 

The last equality in (3.17) represents only a transcrip- 
tion of equation (2.4). Hence weff is proportional to the 
macroscopic contact resistance. In principle, equation 
(3.18) completely determines the heat flow density at 
the interface as well as the effective conductance ueff (or 
weff) and, therefore, it may be considered as basic 
equation of our problem. Contrary to equations (3.2) 
and (3.3) it represents a 2-dim. formulation which, 
moreover, already contains the boundary condition 
(2.2). 

The integral equation (3.18) can be transformed into 
a variational principle with the aid of a method worked 
out in [9, lo]. For this end we make use of the self- 
adjointness and the positive definiteness of the sto- 
chastic operator L,, defined in equation (3.18). For 
arbitrary functionsf,(R) andf,(R) the relations 

<fiLf,) = (f&,,“rl> 1 (3.19) 

(fiLfi> 2 0 (3.20) 

hold. The self-adjointness (3.19) can be seen im- 
mediately from the definitions (3.14) and (3.18). In 
order to prove the second property (3.20) we start with 
the examination of the expression 

WPf> = ((W + Pf)JPf) = <PfJPf).(3.21) 

By means of a Fourier transformation 

h(k) = j d2R e-ikR Pf(R) (3.22) 

we can rewrite it as 
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(fJPf> = j d2k; Ih(k 2 0. (3.23) 

Obviously, expression (3.23) is positive. Thus we have 
shown JP to be a positive definite operator. This result 
leads us, together with w,, 2 0, to equation (3.20). 

Now let us replace function fi in (3.20) by 4 - q, 
where 4‘ and q mean an arbitrary trial function and the 

exact solution of equation (3.18), respectively: 

<(4-4)U4-q)) 2 0, (3.24) 

(4~4) 2 (~,q) + (qL,,4) - w,,Y). (3.25) 

Using the relations (3.18) and (3.19) and requiring (4) 
= (q) we can transform (3.25) in the following way 

or 

(3.26) 

For any 4, the inequality provides us an upper 
bound of the effective local contact resistance. The 
bound W+ coincides with the actual value u’,rr only if 4 

is replaced by the exact solution q. Thus, equation 
(3.26) represents a variational principle which is 

completely equivalent to the integral equation (3.18). 
In order to obtain useful bounds, we have to construct 
trial functions 4 which fit q sufficiently well. 

A lower bound of the effective local contact re- 
sistance can also be derived from (3.14) and (3.15) if we 
eliminate the heat flow density instead of the tempera- 
ture. In analogy to equation (3.18) we get 

(M.\;~ + J-’ P)T = (w,;’ 7’) = w,; (T) (3.27) 

where I- ’ means the inversion of the integral operator 
J given by 

J-‘j-z - id2R’ ’ 
2n(R-R’I 

divgradf(R’). (3.28) 

Starting from this equation instead of equation (3.18), 

we can repeat the above considerations where L,, has 
to be substituted by the operator wa ’ + J- ‘P which is 
positive definite and self-adjoint, too. The result is an 

upper bound of w,/ 

(T(w,’ + J-‘P)F) 1 
(T)Z -= : ~ 2 ; (3.29) 

w err 

for every trial function 7’. In other words, w_ repre- 
sents a lower bound of w,rr. Thus, the two variational 
principles (3.26) and (3.29) enables us to confine the 
possible values of the effective contact resistance to an 
interval between an upper and a lower bound 

w - I U’,ff 5 w + (3.30) 

where the bounds involve, of course, only partial 
information about the statistics of the local contact 
resistance. 

4. AN UPPER BOUND FOR RANDOMLY DISTRIBUTED 
CIRCULAR CONTACTS 

In this section we apply the variational principle to 
the special case of circular contacts of equal size 
distributed at random. Using the local contact re- 
sistance M‘,,, a perfectly conducting circular contact of 
radius R, can be described by 

w,,(R) = 
i 

“, for (RI<& (4.1) 
> 

where the origin of coordinates is placed at the centre 
of the circle. If we consider a single contact between 
two infinite halfspaces, the heat flow vector can be 
determined exactly [ 1 l] 

q(R) = q”(R) = q,,( 1 - R’/R;)- ’ ” fl(R, - R) (4.2) 

where the constant q. is proportional to the total heat 
flow and 0 is the step function 

B(R) = 
i 

; for R 2 0. (4.3) 

Application of the operator J to the heat flow vector q’ 

yields [ 1 l] 

Jq’ = q,R,jO(R, - R) n/2 + O(R - R,) arcsin(R,/R) 

Z v”. (4.4) 

The constriction resistance of a single circular contact 
is given by [2]: 

1 1 

u=2KR,. 
(4.5) 

If we have N such contacts between both halfspaces, 

the effective conductance may be roughly estimated 
taking simply their parallel connection 

KA KA A nR0 
w ~ = __ = __ = __ 

eff = 2u,,, 2UN 4NR, 4a 
(4.6) 

where A denotes the nominal area of the interface and 
a = NrrR$A is the area fraction of the contacts. 

An approximation which partly takes into account 
the mutual influence of the contacts can be derived 
from the variational principle (3.26). As trial function 4 

we choose the superposition of the fields of isolated 
contacts q” 

q = xq”(R-Ri) (4.7) 

with 

(4) = 2W. (4.8) 

Ri denotes the centre of the ith contact. Inserting the 
field (4.7) into equation (3.26), we find 

w+(# = (q‘w,,d) + (QJQ) - (4) (Jij). (4.9) 

Instead of equation (4.1) we now assume a large but 
finite value of the local contact resistance ~1,~ outside 
the contacts. Since the trial function 4 is zero there, the 
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first term of the riot-hand side of equation (4.9) 
vanishes. Splitting up the summation in the second 
term, we write 

w+(~)” = x(q”(R-Ri)v”(R-R,)) 

+ 2 (@(R-Ri) v”(R-Rj)>-(4) (J$*. (4.10) 
i+j 

The average (q”(R - Ri) v”(R - Rj)) depends only 
upon the difference vector (Ri-Rj). In the case of a 
large number N of contacts we can replace the 
summation over the pairs i # j by an integration over 
the difference vector (Ri-Rj) + R weighted by a pair 
distribution function p(R) which is normalized to 
N - 1 where p means the probability density to find a 
contact at a distance R from a fixed one. At large 
distances the distribution of contacts becomes un- 
correlated and, therefore, p(R) tends to N/A. Hence we 
introduce a correlation function g(R) in the usual way 

by 

P(R) = ; [l + g(R)] (4.11) 

where g vanishes at infinity. 
Using this function and taking into account the 

meaning of the angle brackets (2.5), we may write the 
double sum in equation (4.10) as 

C <@(R-R0 v”(R-Rj)) 
i#l 

= j~~~d2Rq*{R-Ri+Rj)vs(R) 

= ; l d’R’p(R’) l d2RqS(R -R’) v*(R) 

= $i d2Rd2R’(1 +g(R’))q”(R-R’)v”(R) 

= ;s dzRd2~qs(~) P(R) 

= 5 j dzRd2R’g(R’)q”(R - R’) v%(R). (4.12) 

The last term in equation (4.10) gives 

(;) (Ji) = $-s d’Rq”(R)s d2R’vS(R’). (4.13) 

With the aid of equations (4.12) and (4.13) we find for 
(4.10) 

w+(q)* = ;~d’Rq”(R)v’(R) 

+ $ f d’Rg(R) 1 d2R’qS(R- R’) v”(R’). (4.14) 

The integral over R’ can bed expressed in the form 

~d*~~‘(R-R’)v~(~) = q;R;f k”’ 
! i 

(4.15) 
0 

with 

f(p) = fd2p’(l-p’2)-“2@(1-p’2) 

X 
( 

tt(l-(p-p’)2); + 6[(p-p’)*-1] 

x arcsinlp - p1 1-I 

f(O)= 73. 
1 

(4.16) 

(4.17) 

This function has been evaluated numerically. The 
result is plotted in Fig. 2. The asymptotic behaviour is 
given by 

From equations (4.8), (4.14) and (4.15) we 
obtain 

W + = $ R&4 

with 

If the correlation function is independent 
orientation, equation (4.20) simplifies to 

&(a) = 1 + 2a RIR:jdRRg(R)~ 

(4.18) 

finally 

(4.19) 

(4.20) 

of the 

(4.21) 

According to equation (4.20) the upper bound consists 
of two terms. The first one describes the parallel 
connection of contacts [equation (4.6)] and the second 
term represents a correction due to the interaction of 
the contacts. 

The sign and value of the interaction term depend on 
the correlation function g. General features of g(R) are 
the asymptotic vanishing and its behaviour at small 
values of the argument 

*In order to prevent mathematical difficulties in perfor- 
ming the average of Jcj, we may add to (4.4) a convergence 
factor exp(-ER), E+ +0 which will be omitted in the final 
result. 

FIG. 2 
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-1 ___-/L____::_IL___I\__IL_ 

RIRO 
FIG. 3. Special correlation functions (schematically). 

g(R) = - 1 for R < 2R, (4.22) 

which signifies that there is no overalpping of contact 

spots. In order to discuss the upper bound (4.19) 

qualitatively, we consider the following limiting cases 
which are shown schematically in Fig. 3. 

(a) The correlation is negligible except condition 
(4.22), i.e. the function g is positive nowhere and the 
interaction term becomes negative. From equation 
(4.21) we get 

~(a) = 1-2.3~. (4.23) 

This assumption concerning g is reasonable only for 
small a. 

(b) The contacts are arranged in a lattice. Thus 
extreme distances between neighbouring contacts are 

realised. The correlation function shows &like peaks 
and is equal to -1 elsewhere. Then the negative 

contributions of the integral are dominant and the 
bound will be relatively low. For a triangular lattice 
the function E(U) is plotted in Fig. 4. 

(c) In the opposite case of clustering of contacts the 
correlation function g has positive peaks near R = 
2R,. This leads to a positive interaction term which 
rises with increasing cluster size. 

Previous authors have already calculated the con- 
tact resistance of a regular arrangement of contact 
spots for small values of the area fraction a. For 
comparison the result of Helm [2] for a square lattice 
of circular contact spots is also plotted in Fig. 4. It lies 
everywhere below the upper bound obtained here. 

FIG. 4. Function E(a): (1) for the upper bound (4.19) of 
uncorrelated circular contact spots ; (2) for the upper bound 
(4.19) of a triangular lattice of circular contact spots; (3) 
estimation by Holm [2] for a square lattice ofcircular contact 

spots. 

However, for higher area fractions of the contacts this 

estimation is not applicable whereas the upper bound 
(4.19) remains valid there. Other estimations which lie 
above the upper bound can be excluded. 

5. CONCLUSlON 

In this paper a general procedure for calculating 
lower and upper bounds of the effective electric or 
thermal contact resistance by means of variational 
principles has been presented. This method can be 
applied to a great number of practical cases. The 
only approximation which has been made to formulate 
the variational principles is the replacement of the 
rough surface by a plane. The random local contact 
resistance permits to describe various factors which 
influence the heat transfer, as roughness, liquid or 

oxide layers at the contacts, or the heat transfer by 
radiation outside the direct contacts. 

The main problem of this method is to find suitable 

trial functions to insert into the corresponding vari- 
ational principles. The better the trial functions fit the 

actual temperature and flow distributions, the nar- 
rower are the bounds. If only little statistical infor- 
mation about the geometry of the contacts is available, 
upper and lower bounds are comparatively far from one 
another. On the contrary, for specialized geometries 
better bounds can be obtained by using well adapted 
trial functions. 

In order to illustrate the method the formulism has 
been applied to circular contacts of equal size distri- 
buted at random. The upper bound of the effective 
contact resistance is obtained as a functional of the 
pair distribution of the circle centres. A lower bound of 
a similarly simple form could not been found yet. 
Presumably, rigorous lower bounds will always in- 
volve higher distribution functions of the contact 
spots. An upper bound for arbitrary geometry and 
distribution of the contact spots will be derived in a 
subsequent paper. 
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LIMITES VARIATIONELLES POUR LA RESISTANCE DE CONTACT THERMIQUE 
EFFECTIVE ENTRE DEUX CORPS A SURFACES RUGUEUSES 

Resume-Le present article est consacre a &valuation de la resistance de contact entre surfaces rugueuses. 
La rugosite est d&rite par une resistance de contact locale variant de mar&e stochastique. Des principes 
variationels gentraux permettant de dkterminer des limites sup&ieures et inf&ieures de la resistance de 

contact macroscopique sent dCduits. Pour illustrer la methode, on cafcule une limite sup&ieure pour une 
distribution irrelptliere de taches de contact circulaires a diametres egaux. La limite de la resistance de 
contact macroscopique est obtenue comme une fonctionelle de la fonction de distribution binaire des taches 

de contact. 

VARIATIONSGRENZEN FUR DEN EFFEKTIVEN WARMEUBERGANGSWIDERSTAND 
ZWISCHEN KGRPERN MIT RAUHEN OBERFLACHEN 

Zu~~fa~ng-Die vorliegende Arbeit befaOt sich mit der ~rechnung des ~~rgangs~derstandes 
zwischen rauhen OberfIlchen. Die Rauhigkeit wird durch einen stochastisch variierenden lokalen 
Kontaktwiderstand beschrieben. Es werden allgemeingiiltige Variationsprinzipien abgeleitet, die es 

gestatten, ohere und untere Grenzen fur den makroskopischen Ubergangstiderstand zu hestimmen. Zur 
Illustration dieser Methode wird eine obere Grenze fur eine beliebige Anordnung von kreisfiirmigen 
Kontakten gleicher GrGBe berechnet. Die fur den markroskopischen Ubergangswiderstand erhaltene 

Grenze stellt ein Funktional der Paarverteilungsfunktion der Kontakte dar. 

BAP~A4~OHHbIE I-PAHMHbI AJIR 3@@EKTABHOI-0 KOHTAKTHOI-0 
TEfIJIOCOfIPOTABJIEHMJl MEKaY TEJIAMM C I.IIEPOXOBATbIMM 

IIOBEPXHOCTIIMM 

AHHoTauWn - B HaCTOmUeii pa6ore paCCMaTpl%BaeTCa KOHTaKTHOe COnpOTHBneHkie MeEny He,,OBHbIMli 

nosepxHoc-rnwi. H~POEHOCT~ y9iTbIeaerca KaK cnyqai%io Mewnomeeca noKanbHoe conporaenemie. 

IlonyqeHbr o6mse BaprraueoHHbIe npmmanbl n03aonwowie onpenenerb sepxmie II mizum4e rpawiubl 

MaKpOCKORHYeCKOrO KOHfaKTHOrO COnpOTHBJleHHX. B KaqeCTBe njJ&iMepa BbiSNCneHa BepXHflP rpaHwua 

,!UiiS CJly’Gii?HOrO paCIipFZeJleHHS4 KpyrnbIX o6nacreH COnp~KOCHOBeH~a O~~HaKOBO~ Be,IWHHbl. 

rpaHAua MaKpOCKOnUqeCKOrO KOHTaKTHOrO COnpOT~BneH~~ IIBnlteTCIT ~YHK~~OnanOM IlapHOti 


